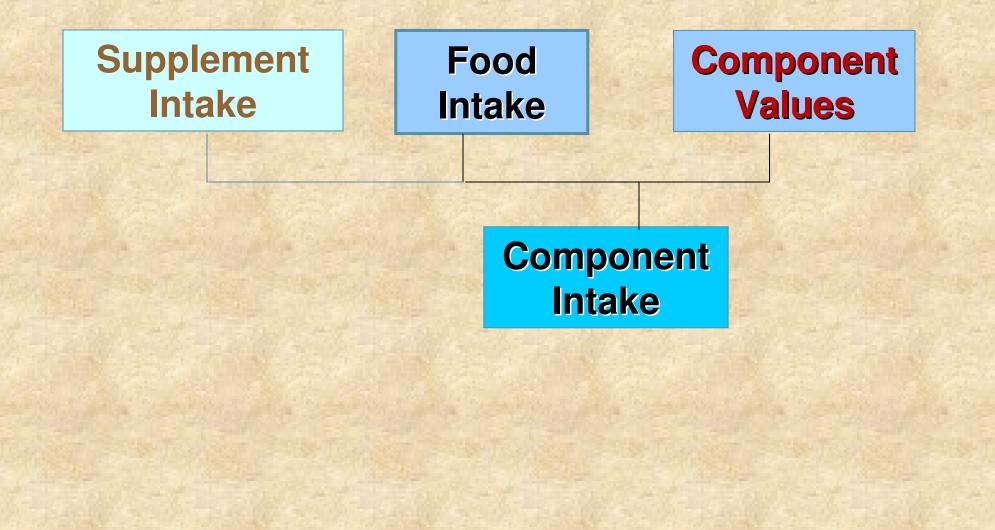
Assessing Vitamin D Content in US Foods and Supplements

Development of the National Nutrient Database


Joanne M. Holden, M.S. Research Leader Nutrient Data Laboratory Beltsville Human Nutrition Research Center

A knowledge of the chemical composition of foods is the first essential in dietary treatment of disease or in any quantitative study of human nutrition.

-McCance & Widdowson, 1940 United Kingdom

Intake Assessment of Dietary Components

Components in Foods/DS May:

- Occur naturally (physiological function)
 Be added to foods (fortification)
 - Be the result of recipes or formulations (e.g. manufacturing) (DS)
 - Be generated in response to biological stress (e.g., UV exposure)
 - Be contaminants (direct or indirect) (DS)
 - May accumulate due to feed or fertilization

Today's Objectives:

 To introduce you to USDA's National Nutrient Databank
 To present the vitamin D project
 To discuss database development

What is the USDA National Nutrient Databank?

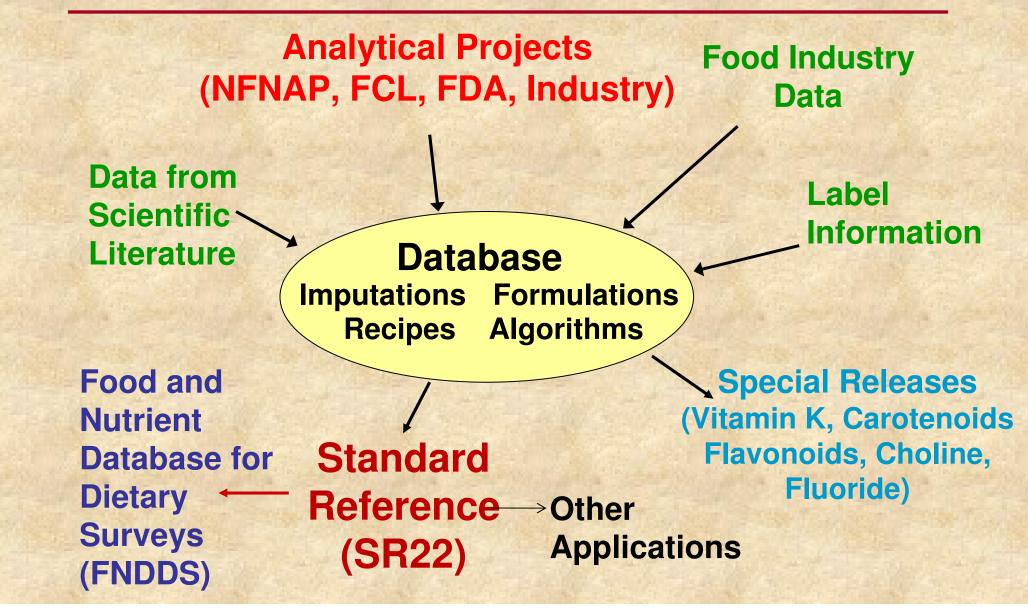
- The U.S. "reference" source for food composition data
- National Nutrient Database for Standard Reference (SR22) provides the foundation for most other applications:

- National surveys: NHANES: What We Eat in America

- Therapeutic, clinical, and research databases
- Product development, labeling, regulation
- Basis of federal, state, local food policy
- Used by consumers and students
- Availability www.ars.usda.gov/nutrientdata

USDA's Nutrient Database for Standard Reference (SR22)

Contains data for 7500 foods Agricultural commodities, formulated foods Generic estimates for agricultural commodities, processed, and prepared fruits, vegetables, meats, poultry, grains Brandname and generic estimates for RTE cereals, selected fast foods, candies, beverages


Traditional Components

Proximate components Amino acids Individual fatty acids Individual sugars **Total starch Total dietary fiber** Vitamins (e.g., vitamin A) **Minerals**

Emerging Components New Analytical Methods New functions/New compounds

- Vitamin D?
- Individual Carotenoids
- Isoflavones
- Flavonoids/Proanthocyanidins
- N-3 Fatty Acids
- **Choline/Sphingolipids**
- **Trans-fatty Acids**
- Glucosinolates/isothiocyanates
 - Other....?

Sources of Data & Information Flow

Expansion of Food Composition Databases

"Short" Lists of Foods & Values

> Special Interest Databases Literature Analytical Reports Food Industry

> > FFQ

Nutrient Database for Standard Reference

> 7500 Foods

> > 3000 Foods

Food and Nutrient Data Dietary System (FNDDS)

7000 "Recipe"Foods reported byParticipants

≻~65 Components

Yield & Nutrient Retention Factors

≻All Cells Filled

Project for Vitamin D Data

Identified Need for Food and Supplement Composition Data

USDA Vitamin D Project Plan

Year 1 – 2005	Year 2 – 2006	Year 3 – 2007	Year 4 – 2008	Year 5 - 2009
Meeting of Stakeholders	Review Status of Database	Characterize Quality Control Materials	Analyze Food Samples with Quality Control Materials	Impute Values for Ingredients
Development of Research Plan	Review of Literature	Qualify Analytical Laboratories	Review Results of Analyses	Impute Values for Multi- ingredient Foods
	Identify and Develop Quality Control Materials	Sample Fortified Foods and Fish	Develop and Implement Standard Rules for Imputation	Technical Review of Vitamin D Values in Survey Subset
	Initiate Work on Method Improvements			Release of Survey Subset to FSRG
	Develop Sampling Plan			Final Release of SR 22

Acquisition of Data

The Food Industry provides calculated or analytical data for products Industry develops data for up to 14 nutrients (mandatory food labeling) Some sectors collaborate with USDA on analytical projects Limited data from scientific literature Recipe calculation and formulations

Sources of Data

Food Industry Scientific Literature Other Government Agencies Standard Recipes and Algorithms

National Food and Nutrient Analysis Program (NFNAP)

National Food and Nutrient Analysis Program

- NFNAP began in Fall, 1997 with an Interagency Agreement with National Heart Lung and Blood Institute
- National Cancer Institute is now the coordinator with contributions from Office of Dietary Supplements and nine other Offices, Institutes
- Interest in generation of original analytical data with variability estimates for components in foods

NFNAP Infrastructure

NDL

Industry Collaborations Primary Labs Commercial contracts

Statistical Consultants (NASS) VA-Tech Texas Tech

Specialty Labs Cooperative agreements

Sample Pickup Contract

NFNAP: Aims

Identify Key Foods and critical nutrients Evaluate existing data quality Devise and implement a nationally-based sampling plan Analyze sampled foods/ valid methods Compile and disseminate representative estimates

What are Key Foods?

The list of foods which provide about 75% of the intake of a specific component to the diet

Frequency vs. Concentration

Foods alone and as ingredients

Some foods are "key" for several nutrients

"Top Ten" Key Foods¹

Milk, fluid, 3.25% milkfat Milk, reduced fat, fluid, 2% milkfat Eggs, chicken, whole Rolls, hamburger or hotdog, plain Vegetable Oil Spread, 60% Fat Beef, ground, regular, cooked, broiled Cheese food, pasteurized processed, American Orange juice, unsweetened Salt, table Fast foods, potato, French fried, in vegetable oil Based on NHANES 2001-2002

Key Foods - Mixed Dishes¹

Pizza Spaghetti Meat Loaf Beef Stew Macaroni & Cheese Chocolate Cake Pot Pie, Chicken / Turkey Burrito with Beans & Cheese ¹Based on the 2001-2002 NHANES: What Do We Eat in America

Key Foods for Vitamin D

Vitamin D fortified foods

- Milk: whole, 2%, 1%, skim, 1% chocolate
- Orange juice fortified with calcium (and vitamin D)
- Selected yogurts
- Ready-to-eat breakfast cereal
- Selected brands of sliced cheese
- Foods with natural vitamin D
 - Finfish and shellfish (?)

Additional sampling

- Eggs
- Infant formula (fortified)
- Mushrooms

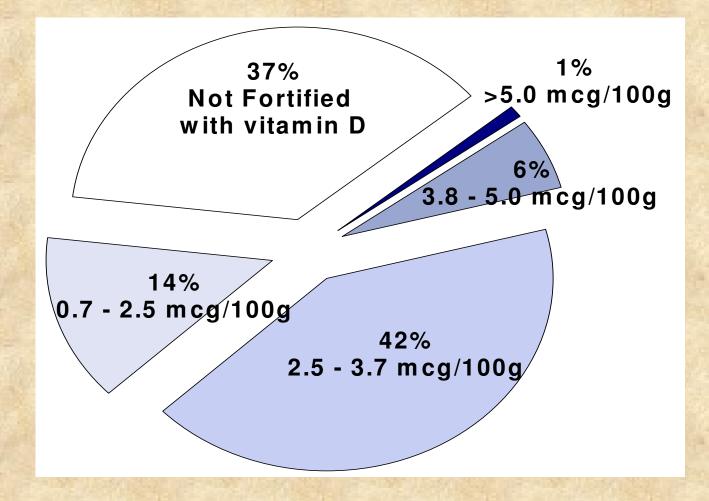
Lawful Additions of Vitamin D under GRAS (Generally Recognized as Safe) Regulations ¹

Category of Food	Maximal level	Estimate of fortified products
Breakfast cereals	350 IU/100 g	Many RTE
	(8.75 mcg/100 g)	63%
Grain products and	90 IU/100 g	Very few
pasta	(2.2 mcg/100g)	
Milk	42 IU/100 g	All
	(1.0 mcg/100g)	

¹ US-FDA, 21CFR Section 184.1950

Other Lawful US-FDA GRAS Additions of Vitamin D for Standardized Products

Category of	Maximal	Estimate of
Food	level	fortified products
Margarine ¹	1500 IU /Ib (37.5 mcg/454 g)	Few


Category of Food	Minimum – Maximal level	Estimate of fortified products
Infant formula ²	40 - 100 IU/100 kcal of formula (1-2.5 mcg)	AII

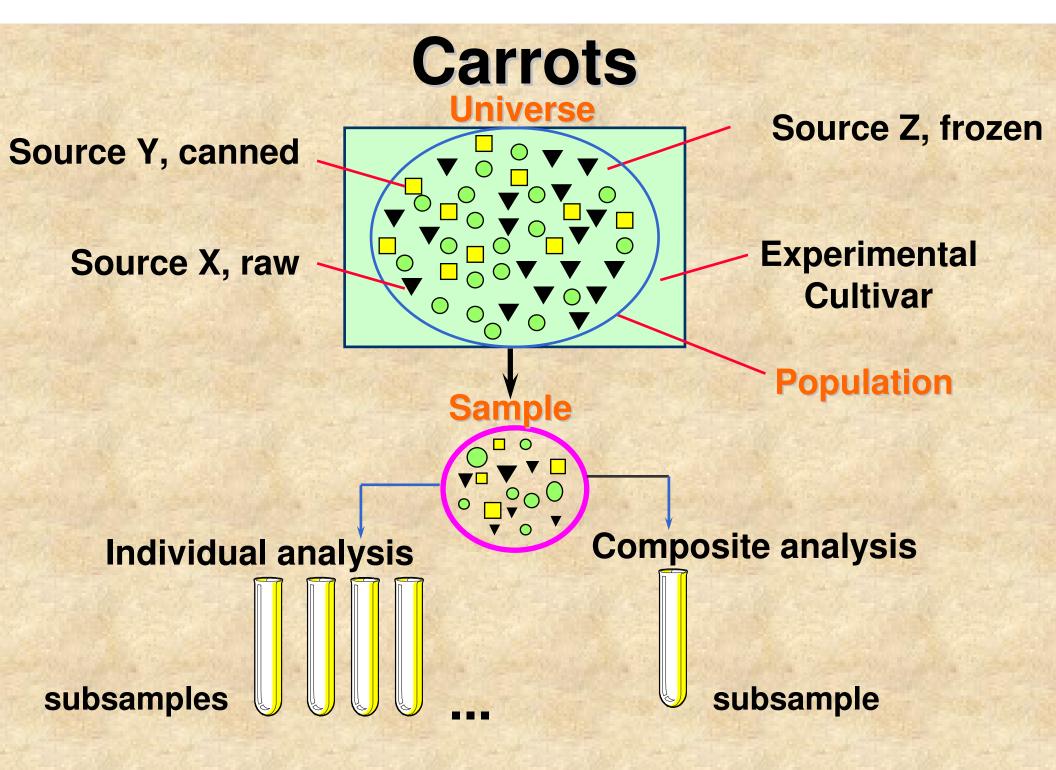
²21CFR Part 107 - Infant Formula

Final Rules on Recent Vitamin D Food Additive Petitions

Category of Food	Maximal level	Est. of fortified products
Calcium fortified fruit juices and fruit juice drinks	2.5 mcg/240 mL	Ca fortified orange juice
Meal replacement bars or other-type bars (dietary control)	2.5 mcg / 40 g	Most
Soy-protein based meal replacement beverages (dietary control)	2.5 mcg/240 mL	Most
Cheese and cheese products (not ricotta, cottage, hard grating)	2 mcg / 30 g	Few

Vitamin D in RTE Cereals

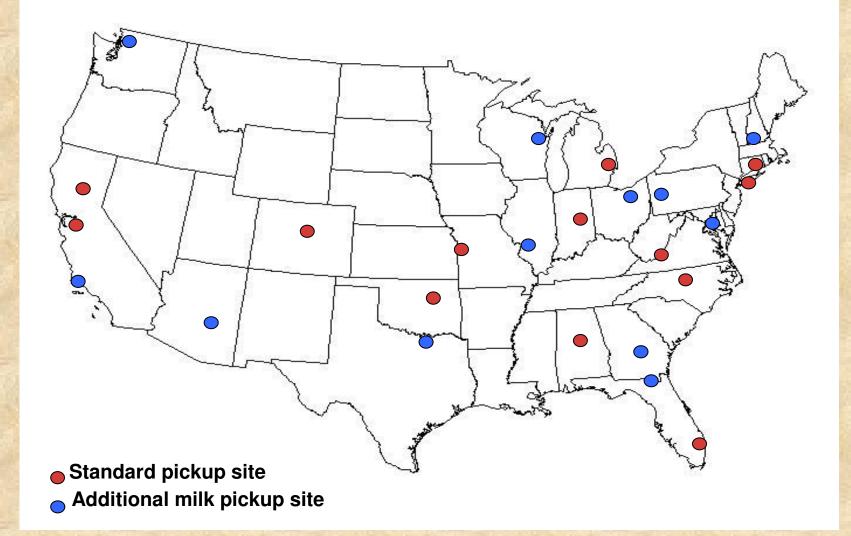
NFNAP: Aims


Identify Key Foods and critical nutrients Evaluate existing data quality Devise and implement a nationallybased sampling plan Analyze sampled foods/ valid methods Compile and disseminate representative estimates

General Process for Evaluating Data Quality

- Were the food samples representative?
- Were the samples handled properly?
- If necessary, were the sample homogenized?
- Was only the edible portion analyzed?
- Were the samples stored correctly?
- How many samples were analyzed?
- Was the analytical method valid?
- Was analytical quality control adequate?

NFNAP: Aims


- Identify Key Foods and critical nutrients
- Evaluate existing data quality
- Devise and implement a nationally-based sampling plan
- Analyze sampled foods/ valid methods
- Compile and disseminate representative estimates

NFNAP Sampling Strategy

- Multi-stage Sampling Plan
- Probability (of selection) proportional to size (pps) - 3 stages
- 2000 Census regions, states and counties (48 contiguous states) rural and urban
- Retail stores with annual sales > \$2m
- Brands by market share
- Levels 1 and 2 to be updated with 2010 Census data

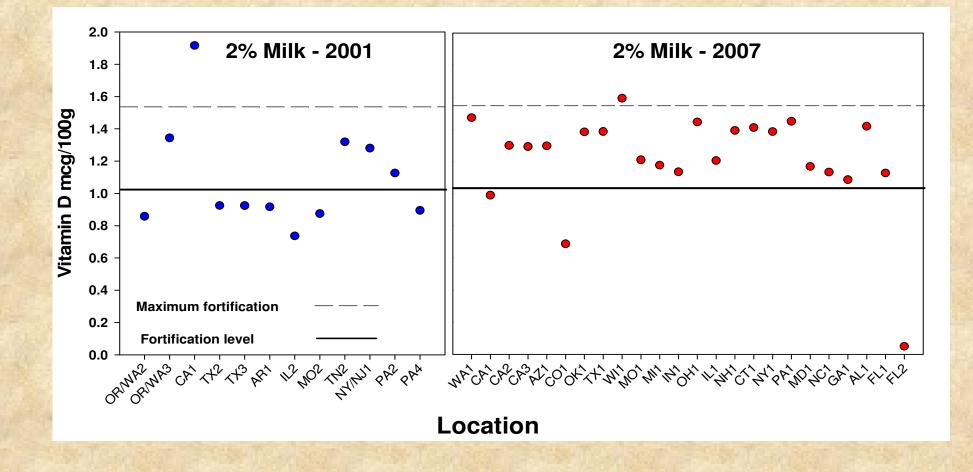
Pickup Locations for Vitamin D Foods

NFNAP: Aims

- Identify Key Foods and critical nutrients
- Evaluate existing data quality
- Devise and implement a nationally-based sampling plan
- Analyze sampled foods/ valid methods
- Compile and disseminate representative estimates

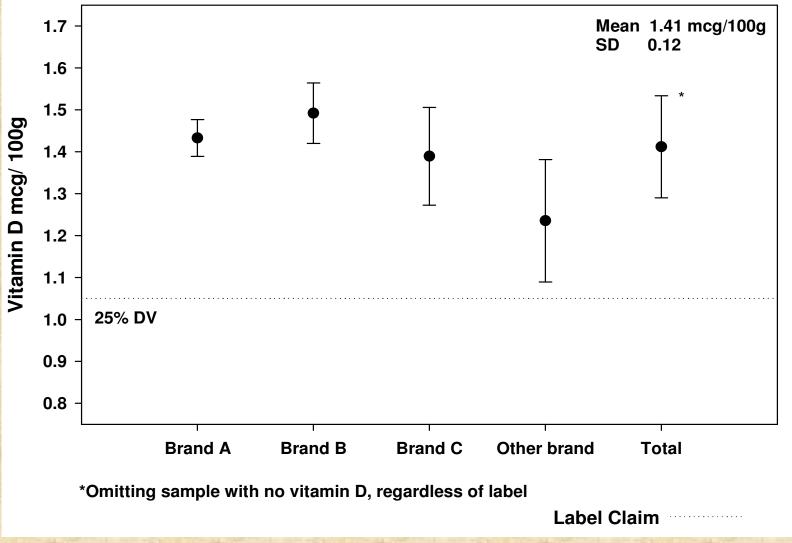
Sample Analysis

- Use of valid methods
- On-going quality assurance program
- Development of In-house qc materials
- Qualification of laboratory(ies)
- USDA lab-C. Byrdwell, FCMDL

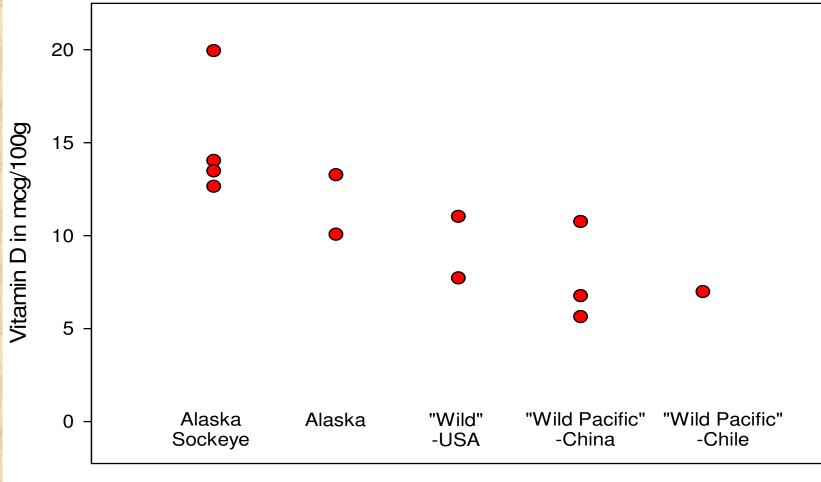

Vitamin D Methodology Used

and the state	Lab D	Lab E	FCMDL
Method Source	Hollis, 2005 (modified ^a)	Hollis, 2005 (modified)	Extraction from AOAC 992.26 (internal standard added) and chromatographic method from AOAC 2002.05
Internal standard	Vitamin D ₂	³ H-Vitamin D ₃	Vitamin D ₂
Initial extraction solvent	Hexane	Hexane	Ether / petroleum ether
Cleanup steps	3	3	2
Quantification	HPLC – UV	HPLC – UV + scintillation counting for the IS	HPLC – UV diode array and LC- MS (auxiliary detection)
Further confirmation of data			LC/MS in SIM mode

NFNAP: Aims

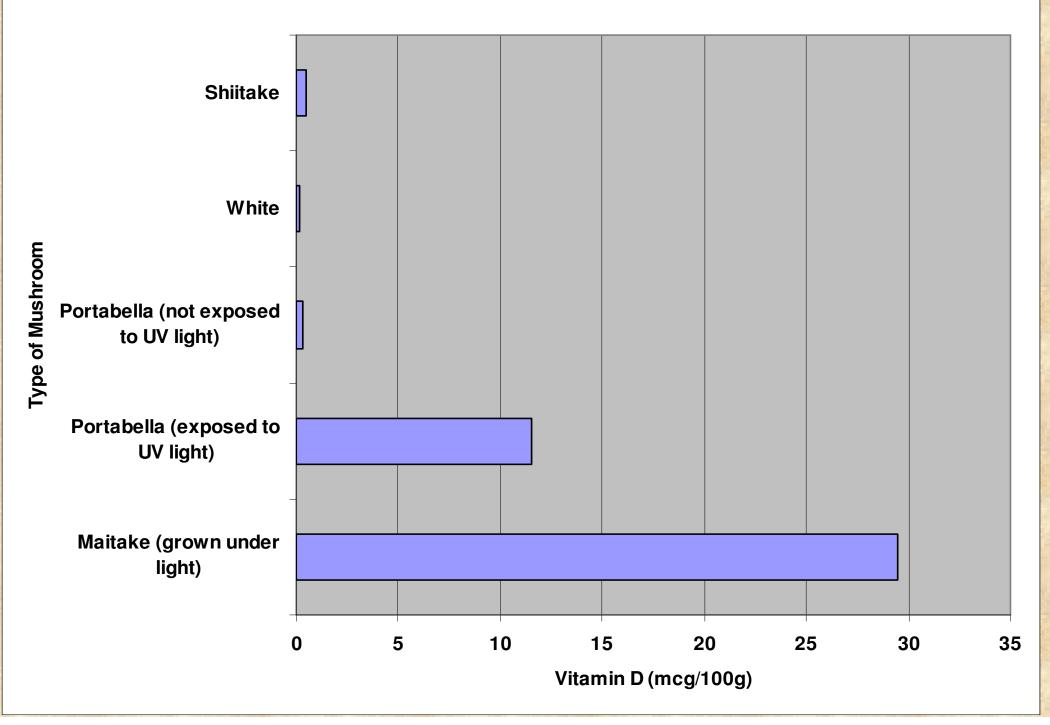

- Identify Key Foods and critical nutrients
- Evaluate existing data quality
- Devise and implement a nationally-based sampling plan
- Analyze sampled foods/ valid methods
- Compile and disseminate representative estimates

Comparison of Vitamin D in 2% Milk: 2001 and 2007

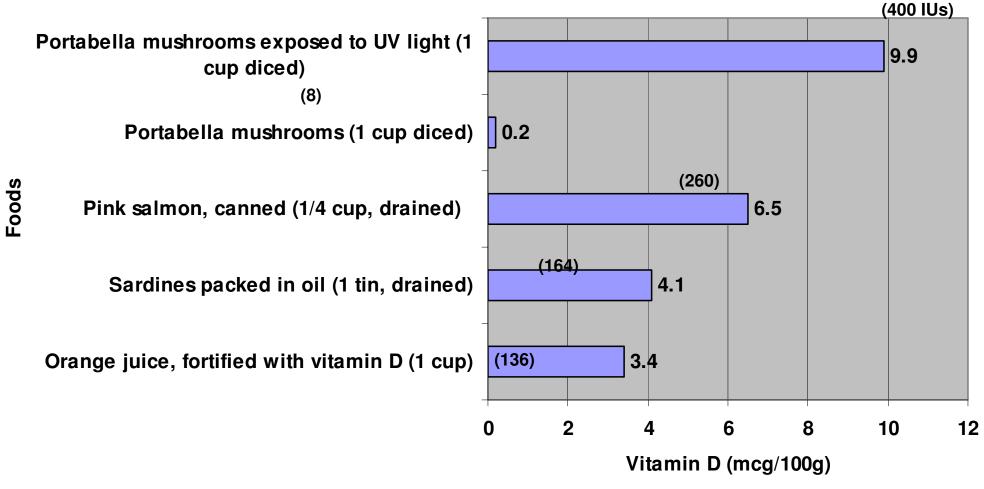


Vitamin D in Fortified (Refrigerated)

Orange Juice

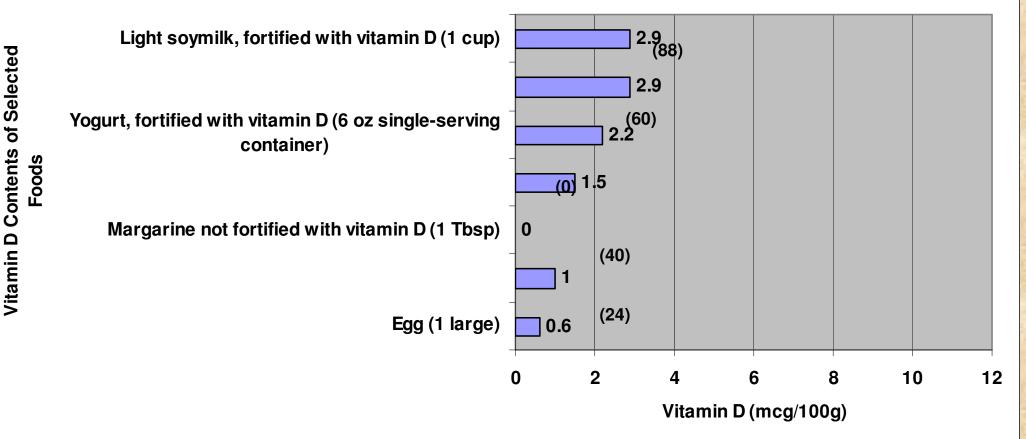


Vitamin D in Selected Salmon Samples



Package Description of Salmon

Vitamin D in Raw Mushrooms, cont.



Vitamin D Values from SR22

Vitamin D Values from SR22, cont.

(116)

Guidelines for Imputing Vitamin D

Assign assumed zero for some foods, based on:

- Food matrix (e.g. fruits unlikely to contain vitamin D)
- Known values for similar foods
- Values in foreign food composition tables
- Impute vitamin D for ingredient items required in recipe and formulation calculations.

Impute vitamin D in multi-ingredient foods by recipe or formulation calculations. Use fortified milk profile only for home-recipe items.

What Do the Data Represent?

- Estimates of means or central tendency
 Nationally representative of food supply
 Based on high quality analytical data
 Recognized algorithms for calculation and estimation
- Other statistical parameters

Database for Dietary Supplements

- **DSID-1**
- USDA released the database with analytical verification and estimates derived from regression analysis
- 2010-Release of Data for Vitamin D
- DSID-1 complements NCHS label database
- USDA database is available on web site:
- http://dietarysupplementdatabase.usda.nih.g

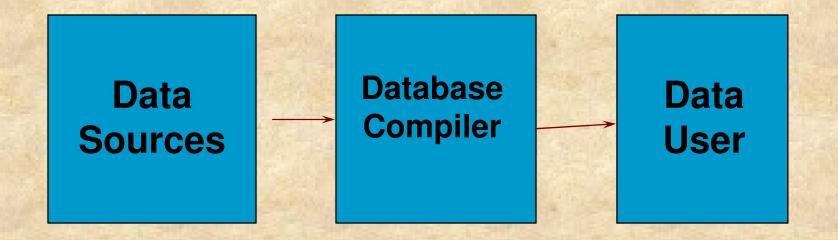
Dietary Supplement Ingredient Database (DSID): What is it?

Database validated by analytical data for key supplement ingredients of public health importance

Collaborators

Office of Dietary Supplements, NIH National Center for Health Statistics, CDC Analytical Chemistry Division, NIST Food and Drug Administration

DSID Home Page



Conclusions-1

Original analytical data are an essential part of USDA's food and DS databases Since the food/products are dynamic long-term support is required New methods, new priorities require continuous monitoring Analytical Chemistry: Food Comp. Methods **Develop.** Lab (USDA)

Conclusions-2 Nationwide sampling is critical Assurance of Representative Values: **Statistical Sampling** Vitamin D: Intake from foods plus supplements and effects of sun exposure are needed

Quality Assurance Link

Financial Support Financial support of Institutes (NCI) and Offices (ODS) of the NIH, the USDA, and the US Food and Drug Administration Vitamin D-Coca-Cola Beverage Institute for Health and Wellness Collaborations with the National **Cattlemen's Beef Association, the National Pork Board, and other food** industry members

Thank you!

Questions?

